Evaluation of N95 Filtering Facepiece Respirators Challenged with Engineered Nanoparticles

نویسندگان

  • Yue Zhou
  • Yung Sung Cheng
چکیده

NIOSH-certified respirators, including N95 respirators, are recommended when engineering and administrative controls do not adequately prevent exposures to airborne nanomaterials. Laboratory evaluations of filtering efficiency using standard test aerosols have been reported in the literature, but there is no information on penetration of engineered nanoparticles (1–100 nm) for N95 filtering facepiece respirators (FFR). This project evaluated the performance of two manufacturers’ N95 FFR filters challenged with engineered nanoparticle aerosols containing metal oxides (such as TiO2) and carbon (such as fullerenes and nanotubes) in contrast with a sodium chloride (NaCl) aerosol at flow rates of 30, 85, and 130 L min. For new respirator filters in general, NaCl aerosol penetration was less than 5% and the most penetrating particle size occurred at 40 nm. Overall penetration of the engineered nanoparticle aerosols exceeded 5% and was often greater than 5% at and near the most penetrating particle size (MPPS), which occurred at a larger particle size range (90– 150 nm). For respirators treated with isopropanol in which the electrostatic force was removed, penetration of NaCl and engineered nanoparticles increased substantially and the MPPS increased to 150 nm for both types of aerosols. Our results indicated that a possible reason for higher maximum penetrations and shift of MPPS observed for these engineered nanoparticles in the new respirators was related to electrostatic collection processes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manikin-based performance evaluation of N95 filtering-facepiece respirators challenged with nanoparticles.

Protection of the human respiratory system from exposure to nanoparticles is becoming an emerging issue in occupational hygiene. The potential adverse health effects associated with particles of approximately 1-100 nm are probably greater than submicron or micron-sized particles. The performance of two models of N95 half-facepiece-filtering respirators against nano-sized particles was evaluated...

متن کامل

Evaluation of a quantitative fit testing method for N95 filtering facepiece respirators.

A method for performing quantitative fit tests (QNFT) with N95 filtering facepiece respirators was developed by earlier investigators. The method employs a simple clamping device to allow the penetration of submicron aerosols through N95 filter media to be measured. The measured value is subtracted from total penetration, with the assumption that the remaining penetration represents faceseal le...

متن کامل

Challenge of N95 filtering facepiece respirators with viable H1N1 influenza aerosols.

OBJECTIVE. Specification of appropriate personal protective equipment for respiratory protection against influenza is somewhat controversial. In a clinical environment, N95 filtering facepiece respirators (FFRs) are often recommended for respiratory protection against infectious aerosols. This study evaluates the ability of N95 FFRs to capture viable H1N1 influenza aerosols. METHODs. Five N95 F...

متن کامل

Comparison of nanoparticle filtration performance of NIOSH-approved and CE-marked particulate filtering facepiece respirators.

The National Institute for Occupational Safety and Health (NIOSH) and European Norms (ENs) employ different test protocols for evaluation of air-purifying particulate respirators commonly referred to as filtering facepiece respirators (FFR). The relative performance of the NIOSH-approved and EN-certified 'Conformité Européen' (CE)-marked FFR is not well studied. NIOSH requires a minimum of 95 a...

متن کامل

Respiratory protection provided by N95 filtering facepiece respirators against airborne dust and microorganisms in agricultural farms.

A new system was used to determine the workplace protection factors (WPF) for dust and bioaerosols in agricultural environments. The field study was performed with a subject wearing an N95 filtering facepiece respirator while performing animal feeding, grain harvesting and unloading, and routine investigation of facilities. As expected, the geometric means (GM) of the WPFs increased with increa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015